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Abstract—This paper presents a comprehensive approach to
predicting plant traits by integrating image and tabular data,
leveraging the rich dataset from the PlantTraits2024 Kaggle
competition. Our methodology combines deep learning models for
image processing with machine learning techniques for tabular
data to forecast six essential plant traits. These traits include stem
specific density, leaf area per dry mass, plant height, seed dry
mass, leaf nitrogen content, and total leaf area, which are crucial
for understanding plant adaptation to their environment and
broader ecological dynamics. By utilizing a mixed data model, we
aim to harness the predictive power of visual cues from images
along with contextual environmental data provided in tabular
format. The challenge is compounded by the diverse and non-
standardized data collection methods inherent in crowd-sourced
datasets such as those from iNaturalist and the TRY database,
which introduces significant variability. Our results highlight
the potential of multimodal learning frameworks in ecological
modeling and underscore the need for robust data preprocessing
to mitigate issues stemming from data heterogeneity. The insights
gained from this study provide a thorough attempt at plant trait
prediction, but question the effectiveness of integrating disparate
data sources.

I. INTRODUCTION

The competition our group tackled was the PlantTraits2024
Kaggle competition [2]. The goal of the competition is to use
a combination of plant image data and world climate data to
predict six traits of the plant:

o X4: Stem Specific Density or Wood Density

e XI11: Leaf Area per Leaf Dry Mass (Specific Leaf Area)
o X18: Plant Height

e X26: Seed Dry Mass

e X50: Leaf Nitrogen per Leaf Area

e X3112: Leaf area

An important piece of information to note about this com-
petition is that around late March, an issue was detected in
which the sample submission could have been used to gain an
artificial boost in test error. As a result, comparisons with older
submissions are skewed negatively. For example, the baseline
performance of the competition provided Kaggle Notebook,
prior to the test data change was -3.16509. Running this
notebook after the test data change results in a significantly
worse performance of around -7.94468. Therefore, we will be
using this performance as the baseline for the comparison to
our improvements.
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A. Dataset Background

Plant traits are an important step in understanding how
plants reacting to their environment, and in turn how plants
are adapting to growing change in the biosphere. The goal
of this competition is to use crowd-sourced plant images and
some ancillary data to predict 6 different plant traits which
could lead to a better understanding of the global patterns
of biodiversity [2]. This competition provided two sources of
data to use for training our model. The first source was a
collection of images gathered from the iNaturalist database,
which includes citizen science plant photographs. iNaturalist
is a species identification app that uses Al algorithms and
includes its prediction, the photograph, and the geolocation in
the database [2]. From the geolocations, six plant trait labels
were matched from a secondary data source [2]: World climate
data gathered from the TRY database. This database contains
species-specific standard deviation and mean of the plant traits
[2].

1) Plant Images: The data that was obtained from the
iNaturalist collection includes a collection of images of plants,
their geolocations and the associated species name that was
predicted. The images that are in the dataset could be used
to analyze sizes, edges, and shapes of features of the plants,
which could help the model predict the 6 traits.

2) Tabular Data: The tabular data contains a combination
of the ancillary predictors based on the geolocations from
the iNaturalist database and matched to the TRY database.
The geolocations were used to find globally available raster
data (WORLDCLIM, SOIL, VOD, MODIS) of climate data
and specific information that could prove beneficial to the
model [2]. The WORLDCLIM data is mainly focused around
the temperatures and precipitation levels at the geolocation
provided from the combination of the TRY database and
the geolocated iNaturalist database [2]. The SOIL columns
provide information regarding the various soil properties at the
geolocation reference, such as sand content and pH[2]. The
VOD columns contains information about the water content
and biomass of the plants [2]. Finally, the MODIS columns
use data pulled from satellites measuring optical reflectance of
sun light [2]. A heatmap of a few features and all six labels
can be seen in Figure 1. Unfortunately to the task at hand, the
lack of correlations present in this figure persist throughout



the majority of the feature/label combinations.

Correlation Matrix
Temp
mozgms 0.23 0.00 0.01-0.02-0.000.00
Rain

| 0. 29 [eR:0 0.36 0.05-0.01-0.01-0.01-0.01 0.00
Soil -

045! ‘0050010010010 01.0.00
VOD -
036002—0 00-0.010.00 0.00-0.00

0.230.05 0.05-0.02p0)-0.02 0.07 0.10 0.02-0.00
X11 -

0.00-0.010.01-0.00-0.02)Ml4] 0.00-0.00-0.00-0.00
X18 _ -0.2

0.01-0.010.01-0.010.07 0.00 yM#4] 0.00-0.000.00

[1.0
0.8
- 0.6

X4 -
-0.4

X26 - -0.0
-0.02-0.01-0.010.00 0.10-0.000.00 p®es[s] 0.00-0.00 ’
X50 -
-0.00-0.01-0.010.00 0.02-0.00-0.000.00 pjMels] 0.00 —0.2
X3112 -
-0.000.0D—O.DOO.DO-O.DO—O.DO0.0D—O.DO0.0Dm
i i i i i i i i i
& ¢ = g $ o © © o n
E 5§88 X2 288 3
# m
<
Fig. 1. Correlation matrix of the six labels and four important features

B. Code Organizational Structure and Breakdown

The Kaggle notebook that we chose to use as a starting
point for our project was the PlantTraits2024: Keras CV
Starter Notebook [2]. This notebook uses the EfficientNetV2
backbone from Keras CV to create a multi-input and multi-
output Deep Learning model. We chose this notebook for
several important reasons. This notebook had a few excellent
features that we could use to launch our efforts into the project.
One benefit to this notebook was its use of both the tabular
data and the plant image data in order to train its model. This
would help point us in the right direction for dealing with both
types of data. Additionally, while it wasn’t the highest scoring
of the example models, it was very well commented and was
easier for us to comprehend, which was essential in being able
to improve upon it. It was also highly supported by Kaggle
members showing that it made for a good starter notebook to
build upon. The dataset starts with importing and installing the
necessary libraries. Then, it configures the notebook by setting
values for the random seed, verbosity, number of classes,
number of folds, among others. This is a very important step
for the effectiveness of the model later on but also left some
room for changes in order to improve upon the model. After
configuration, the notebook loads the training and test data in
order to start building the model. The starter notebook then
starts the next step, which is called ”Datal.oader”. In this step,
both the tabular data and images are loaded in as inputs and
several augmentations are applies to the data such as flip,
rotation and brightness. These augmentations allow the model
to have more images to work with, creating more training data
for the model to learn on, increasing its accuracy. The starter
notebook then takes that data and splits it into 5 folds. Then,
it builds the training and validation datasets to be used in the
model and looks at samples and their associated labels. The

notebook then creates a custom implementation of a coefficient
of determination evaluation metric for this competition.
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This formula quantifies the amount of variation in the out-
come that can be explained by the independent variables
in the model. The notebook then creates a custom model
that combines a pretrained EfficientNetV2 [6] model with a
feedforward model to predict two tasks: The mean of the six
plant traits and the standard deviation. The model then outputs
the results of the main task and evaluates it using equation 1.
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C. Peer Submission Summary

For this study, our peers utilized multiple other methods
to improve the modeling score to better predict plant traits.
One of the first methods present in other kaggle submissions
is using different architectures such as ResNetV2 and other
versions of ResNet to train image and tabular data. The
original starter notebook provided by the competition uses
EfficientNetV2 architecture. EfficientNet is a newer family of
convolutional network architectures that contain faster training
speed and better parameter efficiency than older models, while
ResNet is an extremely deep architecture that shows com-
pelling accuracy and nice convergence behaviors [6]. Other
competitors found success in building similar but custom
architectures with PyTorch in place of tensorflow and received
a score of approximately -1.63967 [9]. One student even found
significant improvement when utilizing an easy deep learning
model specific to the tabular data only and received a score of
0.14953 [10]. This method involved filtering training values to
ensure that the values used for training were higher than the
lower quartile of 0.0005 of the data and less than 0.985 to get
the X4 mean column. The computation gain from excluding
complicated CNN architecture proved a significant gain in
performance as the model could be trained for longer. One peer
took two different approaches, both beginning with similar
paths but using different techniques towards the end of the
modeling process in order to compare and contrast differences
in the modeling techniques. Both processes resulted in a score
of approximately 0.23841 [14] and 0.22161 [11]. The Multi-
Regression notebook augments EfficientNetB0O with additional
layers to incorporate the tabular data with the general goal to
use a Convolutional Neural Network (CNN) on this project.
He utilizes a multi-target regression approach versus a multiple
models approach and then normalizes the tabular input data
[11]. His other approach, the XGBoost approach starts out with
using EfficientNetB3 to load the images to ImageNet, then use
EfficientNet to extract image features into 1280 columns of
tabular data. One final project to mention attained a score of
0.38494 and was publicly available which only used images
to create the model [13]. The steps that the supplementary
notebook took involved V1 demonstrating the training process,
while V2 utilizes precomputed DataFrames and pretrained
models for inference. V3 involves additional plotting and
data filtering based on sample submission minimum and



maximum values, whereas V5 excludes samples beyond the
0.1 to 99.9 range of the training samples. An article published
by professors at the University of Toronto and previously
referenced in this section was very beneficial in understanding
the use of machine learning methods, particularly CNNs, for
object recognition tasks. This paper detailed the importance
of reducing overfitting through proper data augmentation and
dropout [8]. Overall, there are multiple approaches to creating
a model for this project, the overarching question involves
what we chose for our implementation, which combines mul-
tiple techniques and approaches in order to produce great and
trustworthy results and predictions.

II. IMPLEMENTATION

The multimodal nature of this competition would require
a complex neural network architecture capable of reasoning
through important patterns that interact between the tabular
data and image data. Unfortunately, the results of the models
explored during this competition proved less than effective
at classifying the traits of each plant. Therefore this im-
plementation section will dive into the theory behind our
multiple attempts at iteratively improving upon the baseline
performance of the model. The results section will outline the
potential reasons behind their unexpected lack of performance.

A. Data Processing Improvements

Due to the heterogeneity among the photographed plants,
including flowers, trees, bushes, and moss, the six plant traits
targeted in the competition exhibit diverse distributions. As a
result, data processing must be handled carefully in order to
accurately preserve and enhance information for predictions.
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Fig. 2. Plot of X4: Normally distributed

For the majority of attempts, the data processing utilized
was a standard scaling fitted on the train set and applied to
the train and validation set. For a few attempts, an alternative
data processing approach was used through normalizing the
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Fig. 3. Plot of X50: Demonstrates heavy right skew of data

X4 column and through applying a logarithmic transformation
for the remaining 5 before normalizing. Through some early
visualizations such as those in Figures 2 and 3, it is evident
that there is a significantly different distribution between X4,
X50 and the rest of the label columns.

B. Image Classification Model

Narrowing the focus of implementation on classifying the
images, there are a few approaches to best utilizing the
images to classify the plant traits. An approach that was used
was using an ImageNet pre-trained model, which could be
further split into deciding whether or not to freeze layers
of the pre-trained model. Freezing layers of the pre-trained
model can significantly reduce the computation time while still
maintaining important information from the task. However,
freezing layers forces the model to utilize the pre-trained task
of classifying images into one of 1K ImageNet classes [8].

In order to take best advantage of this computation-
specificity tradeoff, another approach was used that combined
all pre-trained models for an ensemble model aimed at taking
advantage of the differences between them. The models used
include:

o EfficientNetV2 (B2, S, and M) [6]

o MobileNetV3 (Small and Large) [15]
e Resnet50 [16]

e YoloV8 [17]

o cspDarkNet [18]

One of the architectures that took advantage of this ensem-
ble model is visualized in Figure 4

C. Tabular Data Processing

CNN architectures are models that benefit from ability to
slide kernels over 2D images. However, for the 152 ansillary
variables present in the dataset, other model types would likely
perform better for the task. XGBoost [19] is a popular model



Fig. 4. Model visualization of five CNN pre-trained models ending in a six
layer FNN

that is especially effective at drawing complex relationships
in tabular data. Due to the incredibly low correlation between
features and labels for this dataset, XGBoost may perform well
in capturing these relationships.

Another architecture that was used for the tabular data was
a feedforward neural network, the “standard” type of neural
network used to model non-linear data. As depicted in the
previous figure 4, a dense and deep neural network was used
with six layers of nodes, starting with 2048 and decreasing by
half at each step.

A simpler architecture that demonstrated relatively good
results was a multiple linear regression. After some prepro-
cessing of the data and image feature extraction, multiple
linear regression was performed on the dataset to attempt to
model the differing correlations between features and labels.

D. General Model Architecture

The tabular data processing and image classification models
were combined in a few different ways to attempt to gather
an encompassing view on their performances.

One such combination involved using the image classifica-
tion pre-trained models to extract important features from the
images, which were then fed into the tabular data processing
model to expand on the 152 provided features. The idea behind
this approach was to extract general information from the
model such as the perceived size of the plant, the general
area the plant resided in, the visible quality of soil.

Another combination of image and tabular data involved
keeping the two models separate but then incorporating them
both into one concatenated layer. This involved processing the
image through a pretrained model and the tabular data through
a feedforward neural network, which was then fed into one
output layer that would predict the six labels.

Although this model did not end up getting tested, another
approach that was considered involved training the models
completely separately, and then using a weighted-average of
the results to attempt to skew the final results closer to the
output that each model generated well. The reasoning behind
this comes from the lack of correlation between the labels.
An example discovered from the conducted exploratory data
analysis, the stem specific density correctly reveals very little
information about the leaf area and yet the image model will
likely reveal more information about the leaf area than the
tabular data. This could lead to the models becoming special-
ized toward each label and therefore providing a corresponding
weight to each prediction could benefit the final performance.

III. RESULTS

As mentioned previously, despite extensive efforts taken
in the theoretical and strategic aspect of the competition,
the empirical results delivered from the models performed
much worse than expected. The majority of models returned
a coefficient of determination lower than desired. For brevity,
this section will include the performance increase or decrease
in parentheses from the baseline (-7.94468).

A. Improvements

As discussed in the implementation section, there were
many different types of architectures and models that were
used in the testing of the competition. The first model that
performed better was switching out the baseline notebook’s
pre-trained image model to a more powerful CNN archi-
tecture (+0.1388) or to freeze the layers of the pretrained
model(+1.1893). Despite the intuitive thought that allowing
the model to train would improve performance, what likely
occurs is the stability of a fully trained model gives better
results than a model that is having its weights become unstable
during early training. A model was also ran without any
training at all, keeping only the pre-trained weights and
the randomized weights of the feedforward (+7.4615). The
surprise performance of a completely randomized model led
our group to doubt the validity of our previous models and to
some extent, the task itself.

The best performing model, a simple multiple linear regres-
sion with a simple MobileNetV2 image preprocessing step
achieved a total test score of 0.22378, placing our team 79th
out of 237 competitors. To compare to figures 2 and 3,
the distribution of the predictions from the best model are
presented in figures 5 and 6. The success of arguably the
simplest model our team decided to use was very surprising
and something that is difficult to reason about. However, the
fact that the highest score achieved is 0.22378, a score that
seemed to be rather consistent with the highest correlations
found between features and labels, meant that the simplicity
of the linear model allowed it to capture the linear correlations
extremely well, but nothing else.

B. Data Collection Limitations

The success of the simplest model led our team to inquire
about what could have lead to the difficulty of complex models
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to capture any meaningful information about the data. A
rather unique aspect of the competition involves the the data
collection methodology employed by the competition. The
images for this task are taken through a citizen science plant
observation app that attempts to use artificial intelligence to
classify the plant and to record some information about the
ecology at the time the photo was taken. This data was then
used to match against a different database in which the plants
were matched to their traits from other algorithms. Therefore,
this poses an inherent difficulty for any algorithm to not only
model the underlying distribution of plant traits, but also to
model the algorithms that were used to create the underlying
distributions, which have been constantly changing throughout
the duration of the databases.

Although it likely is possible for plant traits to be classified
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Fig. 7. Depiction of notable improvements on the baseline score

correctly with better algorithms and higher compute, the
biggest performance gain would likely come from improve-
ments made in the data collection methodology.

IV. CONCLUSION AND FUTURE WORK

The PlantTraits2024 competition presented a unique chal-
lenge of integrating diverse data types—namely, high-
dimensional image data and complex tabular data—to predict
plant traits that are critical for understanding biodiversity and
ecological adaptations. Our approach leveraged a combination
of deep learning techniques and traditional machine learning
methods to tackle this problem, revealing the nuanced inter-
play between different data modalities.

Throughout the project, we explored various model archi-
tectures and data processing techniques to improve prediction
accuracy. Our efforts included employing pre-trained convolu-
tional neural networks (CNNs) for image feature extraction
and integrating these features with processed tabular data
using both ensemble methods and multi-input neural network
architectures. Notably, the simpler models, such as multiple
linear regression combined with basic image preprocessing,
often performed unexpectedly well, suggesting that sometimes
simpler models are more robust, especially when data rela-
tionships are not exceedingly complex or when the dataset
contains inherent noise and weak signal-to-label correlations.

However, the models’ performances also highlighted signifi-
cant challenges, including the difficulty of extracting meaning-
ful predictions from highly heterogeneous and sparsely labeled
data. This was compounded by the issues in data collection
methodologies and the intrinsic variability of biological data.



The competition’s results prompt a reconsideration of how
data collection and preprocessing impact machine learning in
ecological contexts, where data can be exceptionally varied
and influenced by numerous uncontrolled factors.

For future work, there is substantial room for improvement
in both the methodological approaches to multimodal data
integration and the underlying data collection processes:

o Enhanced Data Collection: More rigorous data col-
lection methods, perhaps guided by clearer ecological
hypotheses, could reduce variability and improve model
training. Integrating domain-specific knowledge more
deeply into the feature engineering and model design
phases could also yield benefits.

e Advanced Modeling Techniques: Exploring newer or
less conventional machine learning models that are
specifically tailored for ecological data may provide
breakthroughs. Techniques such as transfer learning,
semi-supervised learning, and generative models could
potentially address some of the challenges related to
sparse and imbalanced data.

« Interdisciplinary Collaboration: Closer collaboration
between data scientists, botanists, and ecologists could
lead to better-defined problem statements and more tar-
geted data collection, improving the relevance and accu-
racy of predictive models.

o Broader Dataset: Expanding the dataset to include more
diverse ecological zones and plant types could help in
developing more robust models that generalize better
across different environments.

In conclusion, while the competition provided valuable
insights into the complexities of plant trait prediction using
machine learning, it also highlighted the limitations of current
methodologies and the importance of thoughtful data collec-
tion and preprocessing. The future of plant trait classification
lies in the convergence of ecological science and advanced
data analytics, where each domain enriches the other, leading
to more accurate and ecologically meaningful predictions.
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