GatorPy: A Custom Implemented Linear
Programming Solver

Andrés Espinosa
Industrial and Systems Engineering
University of Florida
andresespinosa@ufl.edu

Abstract—GatorPy is an educationally motivated Linear Pro-
gramming (LP) solver implemented in pure Python and NumPy.
The project aims to demystify the internal workings of LP
solvers by providing a modular, object-oriented framework that
transforms symbolic problem descriptions into slack form and
solves them using the two-phase Simplex method. The solver
supports a custom modeling language and is designed to be read-
able, extensible, and transparent for students and practitioners
embarking on similar projects.

GatorPy has been validated against CVXPY on a suite of
small LPs, successfully passing 6 out of 7 tests. The remaining
failure shows one of the solver’s current limitations, motivating
iterative improvements as an open-source UF solver. There
are several directions for a collaborative further development
of GatorPy, including a more robust test suite, performance-
oriented reimplementation in a compiled language, and support
for mixed-integer programs, convex programs, alternative solver
algorithm. GatorPy offers both a functional LP solver and an
exciting opportunity as an open-source educational platform for
understanding computational optimization fundamentals.

I. INTRODUCTION

GatorPy is a custom Linear Programming (LP) solver im-
plemented entirely in Python. It is built using native Python
constructs and NumPy for numerical operations, and follows
an object-oriented programming (OOP) approach to ensure
modularity and extensibility. GatorPy transforms user-defined
LP problems into a structured internal representation, reduces
the problem to an equivalent standard form, and applies
established solving algorithms to compute optimal solutions.
This project report outlines the implementation of GatorPy and
its modular design, encouraging its growth as an open-source
solver for UF.

The remainder of the introduction, Section I, provides
an overview of linear programming, the simplex algorithm,
existing Operations Research (OR) solvers, and the motivation
behind developing GatorPy. The implementation is discussed
in detail in Section II, highlighting key design choices made
throughout the development process. The section begins with
an overview of GatorPy’s intuitive modeling syntax, followed
by an explanation of the simplex algorithm in pseudocode.
Next, the core Python objects that serve as the backbone of the
framework are introduced. Finally, the internal transformations
that convert a user-defined GatorPy problem into a solvable
slack form LP are described. Section III presents the testing
suite used to validate the functionality of the project, along
with instructions on how to deploy and run GatorPy. The

conclusion, Section IV, outlines potential directions for future
work and concludes this report.

A. Linear Programming

Linear Programming (LP) is a mathematical optimization
technique for achieving the best outcome in a mathematical
model whose requirements are represented by linear relation-
ships. LP has vast applications across various fields, including
economics, supply chain, chemical engineering, and industrial
engineering. An LP problem typically involves an objective
function, which is to be maximized or minimized, subject to
a set of linear constraints.

Formally, an LP problem can be expressed as:

minimize c¢'x
subject to:
Ax<Db

where:

e x € R” is the vector of decision variables,

e ¢ € R" is the vector of coefficients of the objective
function,

o A € R™*™ is the matrix of coefficients of the constraints,

e b € R™ is the right-hand side vector of the constraints.

LPs are highly versatile, with numerous real-world problems
across various domains either naturally formulated as LPs or
effectively approximated as such.

B. Simplex Algorithm

The Simplex algorithm is one of the most widely used
methods for solving linear programming problems. It is an
iterative method that navigates along the edges of the feasible
region to reach the optimal solution. The algorithm was
developed by George Dantzig in 1947 and has since become
a cornerstone of operational research and optimization.

The key advantages of the Simplex algorithm include its
ability to efficiently handle large problems and its ability to
identify both optimal solutions and infeasibility/unbounded-
ness in the problem. The Simplex algorithm is also remarkably
intuitive, as it moves from vertex to vertex of a polyhedron
to identify the point with the optimal objective value. This
concept is shown visually in Figure 1.

Several variants of the Simplex algorithm exist, including
primal, dual, and revised forms. In GatorPy, the algorithm

Fig. 1. Visual interpretation of the Simplex traversal [1]

is implemented using the two-phase Simplex method. This
approach ensures the user can input any LP in the expected
modeling language and solver will handle feasibility, detect
unboundedness, and return optimal solutions when they exist.

C. Available Solvers

There are numerous optimization solvers available, both
commercial and open-source, that implement LP solvers and
other optimization methods. Some of the most popular com-
mercial solvers include:

o« CPLEX: A high-performance commercial optimization
solver by IBM.

¢ Gurobi: Another leading commercial optimization solver,
known for its speed and reliability, and used in a wide
range of industries.

o Excel Solver: A built-in optimization tool in Microsoft
Excel that allows users to solve LP problems directly
within a spreadsheet interface.

In the open-source domain, several solvers offer accessible
alternatives to commercial solutions:

e GLPK (GNU Linear Programming Kit): A popular
open-source LP solver that implements both the Simplex
method and interior-point methods.

e COIN-OR: A collection of open-source optimization
solvers, which includes Clp (the COIN-OR LP solver).

« CVXPY: A Python-based optimization modeling lan-
guage that provides a high-level interface for solving LP
and convex optimization problems. CVXPY allows for
easy integration of different solvers and has become a
widely adopted tool in academic and industrial settings.

GatorPy is primarily inspired by CVXPY, with a strong

emphasis on educational value and extensibility. Solvers can
often be quite complex due to the advanced techniques they
use to optimize computation time. By building a custom
solver in Python, GatorPy offers greater transparency and
customization, making it an ideal tool for students to better
understand the underlying principles.

D. Motivation

The “’behind-the-scenes” complexity of solvers often leads
students to lose sight of the overall goals and concepts of OR.

Many students need an intuitive understanding of the tools they
use in order to truly connect with the material. This project
has two main objectives: First, to provide an educational tool
by offering a clear and simple implementation of a linear
programming (LP) solver, built entirely using Python and
NumPy. Second, to lay the groundwork for an open-source
solver that can be further developed by future UF students,
offering an opportunity for students to engage directly with
the core concepts of LP solving.

II. IMPLEMENTATION

The implementation of GatorPy can be divided into four
key parts:

1) Algebraic Modeling Language: The first component
of this project focuses on developing a custom al-
gebraic modeling language for GatorPy. This syntax
strikes a balance between Pythonic pseudo-code and
an algebraic language interface, aiming to provide an
intuitive framework for formulating linear programming
problems. A more detailed discussion on its design and
implementation can be found in Section II-A.

2) Simplex Algorithm: The second component involves
the implementation of the Simplex algorithm, which
processes a linear programming problem in slack form to
yield the optimal solution. If the problem is infeasible
or unbounded, the algorithm provides the appropriate
certificates. A thorough explanation of the Simplex
algorithm is provided in Section II-B.

3) Python Objects: The third component is the develop-
ment of Python objects that support the GatorPy model-
ing language. These objects are designed to streamline
the modeling process, making it easier to define and
solve linear programming problems. Their purpose, de-
sign, and functionality are discussed in Section II-C.

4) Reductions for Slack Form: A key focus of this project
is the implementation of reductions that convert any
given LP problem into a form that can be processed
by the Simplex algorithm. This transformation is es-
sential for the solver’s operation and is explained in
Section II-D.

A. GatorPy Syntax

GatorPy makes extensive use of the NumPy numerical
processing package, ensuring high performance while using
the infamously slow language of Python. To effectively model
linear programming problems, GatorPy relies on a set of key
user-inputted objects that structure the problem. The structure
of a typical GatorPy problem involves the following steps:

1) Create Parameter objects for each parameter in
the problem. Each Parameter object takes in a
np.array as the value.

2) Create Variable objects for each variable in the
problem. Each Variable takes in an integer as the
shape of the vector. Note: Each variable must be a
vector, this is left as a potential next step in section
IV-A.

3) Create a Problem object representing the overall prob-
lem. The Problem object expects a Python dict
object with the following key-value pairs:

e Fither "minimize" or "maximize" as a key
with a GatorPy Expression as the value.

o Either "subject to" or "constraints" asa
key with a list of GatorPy Constraint objects as
the value.

The primary objective of GatorPy’s optimization modeling
syntax is to balance a pythonic interface with standard linear
algebraic notation. The simple syntax of GatorPy can be
best communicated with an example. Consider the following
optimization problem with two variables and three constraints:

maximize cTy

subject to Ay <b
y=1
y=0

where

12 1o N [n
€= [0.5}’ A= [1.2 0.5}’ b= H y= [gp]
This above optimization problem can be expressed in

GatorPy as:

Parameters
A = Parameter (np.array([[1,1],[1.2,0.511))
b = Parameter (np.array([1,1]))
c = Parameter (np.array([1.2,1]))
Variables
y = Variable(2)
Problem
problem = Problem ({
'maximize’: c.T @ vy,

"subject to’: [
A @y <= Db,
<

1,
>= 0

y
y
b

solution = problem.solve ()
print (solution)

>>> (1.14, [0.71, 0.29], True)

Listing 1. Solving a Linear Program Symbolically

B. Simplex Implementation

The implementation of the Simplex algorithm in GatorPy
uses the two-phase simplex method, which will solve for op-
timality without needing to explicitly enter a feasible starting
point. This version of the simplex algorithm is divided into two
main phases: an initial feasibility search phase (Phase 1), and
an optimality algorithm (Phase 2). A high-level pseudo-code
of the two-phase simplex algorithm is available in Algorithm
1, while the individual algorithm pseudocodes are located in
the Appendix in section V.

1) Phase I: Finding a Feasible Solution: The goal of Phase
1 is to find a basic feasible solution (BFS) for the given linear
programming problem. If the problem is infeasible, Phase 1
will detect this and terminate. The process involves:

1) Augmenting the constraint matrix A with artificial vari-
ables to form an auxiliary problem.

2) Minimizing the sum of the artificial variables to deter-
mine feasibility.

3) Using Bland’s rule to prevent cycling during pivot
selection.

4) Removing artificial variables from the basis if a feasible
solution is found.

2) Phase 2: Optimizing the Objective Function: Once a
feasible solution is obtained, Phase 2 optimizes the objective
function. The process involves:

1) Constructing the simplex tableau using the feasible basis
obtained from Phase 1.
2) Iteratively selecting entering and leaving variables based
on Bland’s rule and the minimum ratio test.
3) Performing pivot operations to update the tableau and
improve the objective value.
) Terminating when no entering variable exists, indicating
optimality.

~

3) Key Functions in the Implementation: The GatorPy
implementation relies on six key pieces of the full algorithm.

e pivot: Performs the pivot operation to update the sim-
plex tableau. This algorithm is summarized in Algorithm
2

e find_entering_variable: Determines the enter-
ing variable based on the specified rule (e.g., Bland’s
rule). This algorithm is summarized in Algorithm 3

e find_leaving_variable: Identifies the leaving
variable using the minimum ratio test. This algorithm is
summarized in Algorithm 4

e simplex_phase_1: Implements Phase 1 of the sim-
plex algorithm. This algorithm is summarized in Algo-
rithm 5

e simplex_phase_2: Implements Phase 2 of the sim-
plex algorithm. This algorithm is summarized in Algo-
rithm 6

e two_phase_simplex: Combines Phase 1 and Phase 2
to solve the linear programming problem. This algorithm
is summarized in Algorithm 1

Algorithm 1 two_phase_simplex

Input: matrix A € R™*", vector b € R™, cost vector ¢ € R"”
Output: optimal value f*, solution x* € R™, Feasibility
: (A",b', B) + simplex_phase_1(A,b)
. if result is None then
return None, None, Infeasible
end if
. (f*,x*) + simplex_phase_2(A’,b ¢, B)
: return f*, x*, Feasible

2 X =

> A = Parameter (np.array([[1,
s b =

3 x_hot =

%

C. Python Objects |

The GatorPy solver is built on a foundation of modular ;
Python classes that enable symbolic modeling, expression
handling, and LP transformation. The object-oriented design (
ensures that each mathematical concept—such as a variable,
parameter, or constraint is represented by a dedicated object *
that carries behavior and structure. A fundamental program-
ming concept that is used for these classes is “Operator
Overloading”. Operator Overloading allows for a program to
explicitly override the default behavior of an operation. This
is what allows for the sum of two Variable objects to
yield a Sum object. This design simplifies user interaction and
facilitates internal processing and reduction to slack form. The
key classes are outlined below:

1) Expressions: The Expression class acts as a wrap- °
per for all objects in GatorPy. The Expression is most _
importantly defined with a parents attribute that allows
Expression objects to be linked to each other in a tree.

IS

expr = A Q@ x + D 9

2) Variable: The Variable class represents decision vari-
ables in an LP. Each Variable object is initialized with a
shape (i.e., its dimensionality) and internally stores a NumPy i
vector of symbolic variables. o

Creating a 2x1 vector variable
Variable (2)

3) Parameter: The Parameter class wraps constant prob-
lem data such as coefficient vectors or constraint matrices.
Each instance stores a NumPy array and supports arithmetic
with other Parameters, Variables, and Expressions.

Creating a 2x2 matrix A and 2x1 vector b
1], [1.2, 0.511))
Parameter (np.array([1, 1]1))

4) Sums and LinearOperations: Two important symbolic
objects are Sum and LinearOperation. These classes
serve as the intermediate step between Variable objects
and Constraints. A LinearOperation is defined
as a symbolic representation of a matrix/vector multiplica-
tion and consists of a left Parameter object and a
right Variable object. A Sum object will collect any
Variables, Parameters, or LinearOperations to-
gether in a list of terms.

Creating two 2x1 variables and one 2x2 parameter
x_cold = Variable(2)

Variable (2)

A = Parameter (np.array([[1l, 1], [1.2, 0.5]11))

Creating two LinearOperations with "@"

lin_opl = A @ x_hot

lin_op2 = - A @ x_cold

Creating a Sum object with "+" or
sum_obj = 1lin_opl + lin_op2

n_mn

5) Constraint: Constraints are created via comparison oper-
ations on Expression objects. They encapsulate inequality
or equality relationships and are stored in the problem formu-
lation.

X #=Q O P H*
I

» solution =

Creating a 2x2 matrix A and 2x1 vector b

A = Parameter (np.array([[1, 11, [1.2, 0.511))
b = Parameter (np.array([1l, 1])

Creating a 2x1 vector variable

x = Variable (2)

Creating two constraints

conl = A @ x <=Db

con2 = x >= 0

6) Problem: The Problem class defines the optimization
problem. It takes in a dictionary specifying the objective
(either "minimize" or "maximize") and a list of con-
straints. Once instantiated, the problem can be solved using the
solve () method, which performs symbolic parsing, reduces
to slack form, and applies the two-phase simplex method.
matrix A and two 2x1 vectors b, c
array([[1, 11, [1.2, 0.511))
array([1, 1]))

array ([5, 3.5]1))
vector variable

Creating a 2x2
= Parameter (np.
= Parameter (np.
= Parameter (np.
Creating a 2x1
= Variable (2)

prob = Problem({
"maximize": c¢.T @ x,
"subject to": [
A @ x <= Db,
x <
X >

1/
0

]
})
prob.solve ()

Figure 2 provides a visual representation of how GatorPy
takes in the Parameter and Variable objects and turns
them into complete representation of an LP. Each object is
connected to the subsequent Expression it contributes to,
ultimately forming the final Problem object.

Parameters @ @ @
Variables
Operations \
Constraints con_2
Problem problem

Fig. 2. Directed computation graph demonstrating Expression relation-
ships. The problem data in Code II-C6 is demonstrated as Expressions
are linked together to create the Problem.

D. LP Reductions

In order to solve a general linear programming (LP) prob-
lem using the simplex algorithm, the problem must first be
transformed into slack form. The Problem class encapsulates
this transformation process by reducing arbitrary LP input
definitions into a set of structured matrix equalities and a
standardized objective. This section outlines the full reduction
pipeline used by the to_slack_form method.

An LP problem is provided as a dictionary with an objective
function (minimize or maximize) and a list of constraints
under subject to or constraints. Constraints may
include inequalities, equalities, or non-negativity conditions.

The transformation from a general problem to slack form
proceeds through the following sequential reductions:

1) Bounded Variable Collection: Non-negativity con-
straints are parsed to identify bounded variables (vari-
ables with > 0 restrictions).

2) Non-negativity Stripping: Non-negativity constraints
are removed from the constraint list since they are
tracked separately via variable flags.

3) Unbounded Variable Identification: All variables ap-
pearing in the constraint set that were not previously
identified as bounded are labeled as unbounded.

4) Equality Standardization: Inequality constraints are
transformed into equalities by introducing slack or sur-
plus variables, which are labeled as bounded.

5) Unbounded Variable Decomposition: Every un-
bounded variable is replaced with a pair of bounded
variables (zT — z7).

6) Constraint Rewriting: All existing constraints are
rewritten in terms of the new bounded variables.

7) Variable Indexing: The final list of bounded variables
is assigned a block index in the variable vector.

8) Matrix Formulation: FEach equality constraint
is converted into a matrix row (A;,b;) using
linear_equality_to_matrix_equality.

9) Vector Concatenation: All bounded variables are con-

catenated into a single flat vector x_lbig, representing

the problem’s variable space.

Constraint Concatenation: Each A; and b; of each

constraint is concatenated into one combined constraint

with Apig, bpig parameters.

Objective Concatenation: The objective function is

linearized and mapped to a vector ¢ aligned with the

same variable ordering.

12) Minimization Standardization: If the problem is a

maximization, it is converted to a minimization by

negating the objective.

Solve: The two_phase_simplex function is called

and the problem solution is returned.

10)

11

13)

E. Final Form

After the transformation, the problem is expressed in slack
form:

minimize ¢’¢
subject to Ax=Db
x>0

Where x is the flat vector x_big composed of all bounded
variables, including replacements for unbounded and slack
variables. The vectors ¢, b and matrix A are stored in c_big,
b_big, and A_big respectively.

This slack form representation is now compatible with the
two-phase simplex method and is fed back in to the algorithm
described previously in Algorithm 1

III. RESULTS
A. Testing

The testing suite is available in the tests.py file. In
order to test the results of GatorPy, CVXPY is used as a
comparison to ensure that GatorPy returns the correct solution.
The testing suite currently involves 7 simple LPs that are ran
in both GatorPy and CVXPY and compared to each other.
GatorPy currently passes 6/7 unit tests, notably failing to drop
auxiliary variables from the basis when the auxiliary variables
outnumber the original set of variables.

Augmenting the testing suite with a richer set of LPs of
varying sizes and problem structure is left as a next step in
Section IV-A.

B. GatorPy Usage

To use GatorPy, proceed to the ECH4905 - Andres Espinosa
repository GitHub link available in the references at [2].
The files for GatorPy are available at project/gatorpy.
Before attempting to run your own LP, ensure a Python
version with NumPy. This repository was only tested with
Python=3.11 and NumPy=1.26.0. The code is likely to work
with earlier/later versions but the code has not been verified to
work with other versions. To solve your own LP with GatorPy,
download this folder, replace the example LP in solve.py
with your own LP entered in the GatorPy modeling and finally
run the solve.py file.

Publishing GatorPy as a standalone PyPi package available
to install with pip is left as a next step in Section I'V-A.

IV. DISCUSSION
A. Future Work

Several directions remain to enhance the solver’s robustness,
generality, and performance. Future efforts will focus on the
following areas:

o Expanded Benchmarking Suite: The current test suite
could be augmented to include problems of varying sizes,
particularly those with a large number of variables and
constraints. This would allow for a more thorough in-
vestigation of solver performance under computationally
intensive scenarios.

« Diverse Problem Structures: The solver could be eval-
uated on a broader array of problem structures and for-
mulations. This would help assess the effectiveness and
flexibility of the solver”’s problem reduction mechanisms
across different LP representations.

« Extension to Mixed-Integer Programming (MIP): Sup-
port for mixed-integer programs could easily be intro-
duced by implementing a BinaryVariable object.
Algorithms such as branch-and-bound and Gomory cut
methods could be incorporated to handle integrality con-
straints while still relying on the already implemented
Simplex algorithm.

+ Extension to Convex Optimization: A difficult, but
rewarding extension could be to support general convex
programs. This involves introducing a set of Function
objects representing common convex functions, which
can be composed using disciplined convex program-
ming (DCP) rules. These enhancements would evolve
the framework into a full-featured convex optimization
solver.

o Multiple Solver Algorithms: Currently, the Simplex
algorithm is the only algorithm available for running LPs
through. This could be changed by defining a general
solver structure that takes in a set of parameters
and variables and outputs a solution. This would allow
GatorPy to have multiple algorithms implemented such as
interior-point methods. This would also be necessary in
order to extend the solver to include convex problems,
as the Simplex algorithm does not work with convex
problems.

« Efficient Language Switch: Transitioning the solver’s
core implementation to a more efficient language such
as Rust, Julia, or C++ could significantly improve per-
formance, particularly for large-scale problems. These
languages offer better memory management and compu-
tational speed, making them ideal for optimization tasks.

B. Conclusion

GatorPy provides a clear, educationally focused implemen-
tation of a Linear Programming solver using pure Python and
NumPy. By constructing a modular object-oriented framework
and employing the two-phase Simplex method, GatorPy de-
mystifies OR solvers and offers students an accessible entry
point into optimization.

This project highlights how algorithmic transparency and
thoughtful software design can enable a deeper understanding
of optimization theory. From the algebraic modeling lan-
guage to the step-by-step transformations into slack form,
every component was engineered to maximize readability and
reusability for future students. The solver successfully handles
a range of LP problems, validates feasibility, and reliably
computes optimal solutions, laying a solid foundation for
future development.

However, there are many areas of improvement that this
project could benefit from. Extensions to MIPs and Convex
Programs is an interesting area of further work that could
elevate GatorPy. Rewriting the repository in another language
could prove an incredibly rewarding challenge for learning
both OR tools and another programming language.

Overall, GatorPy serves as both a functional solver and a
pedagogical tool, offering a hands-on open-source platform
for students to experiment with and better understand the
mechanics of linear programming.

V. APPENDIX

Algorithm 2 pivot
Input: tableau T € R™*", indices r and ¢
Output: tableau T

1: T,.«T,./Trc

2: for each row 7 # r do

3: Ti,: < Ti,: —Ti,c- Tr,:

4: end for

5: return T

> normalize pivot row
> update rows

> return updated tableau

Algorithm 3 find_entering_variable

Input: tableau T € R™*"
Qutput: index j, or None

1. for j=1ton—1do

2 if T, ; < —¢ then

3 return j > return entering index
4: end if

5: end for

6: return none > no variables found

Algorithm 4 find_leaving_variable

Input: tableau T € R™*™, index ¢
OQutput: index r, or None
1: Initialize empty list R
2: fori=1tom—1do
3: if T, . > ¢ then
4 Append (T;,,/T;.,i) to R
5 end if
6: end for
7: if R is empty then
8
9
0
1

: return None > no variables found
: end if

;74— argming q
: return r

> update row index
> return leaving index

REFERENCES
[1] User:Sdo, “Elongated pentagonal orthocupolarotunda,”
2007, created using GIMP based on Im-

age:Elongated_pentagonal_orthocupolarotunda.png., Licensed under CC
BY-SA 3.0. [Online]. Available: https://commons.wikimedia.org/w/index.
php?curid=1295511

[2] A. Espinosa, “Ech4905 project
2025-04-17. [Online]. Available:
ech4905-andres-espinosa/tree/main

repository,” 2025, accessed:
https://github.com/Hansespinosa2/

Algorithm 5 simplex_phase_ 1
Input: Matrix A, vector b
QOutput: Matrix A, vector b, list B, or None
1: Aguz i= [A I]
I b

PT=) 4T C1T Z1Th

3 B = [dim(A)a,. .., dim(Aguy)o]
4: while true do

5 ¢+ find_entering_variable(T)
6: if ¢ is None then
7

8

9

(3]

break
end if

: r + find_leaving_variable(T,c)
10: if none found then
11: return None
12: end if
13: T < pivot(T,c,r)
14: end while
15: if T_y _1 > 0 then
16: return None
17: end if
18: T + pivot(T,c,r)
19: A,b<+< T
20: return A, b, B

> return infeasible

> positive objective value
> return infeasible

> remove aux vars

Algorithm 6 simplex_phase_2

Input: Matrix A, vector b, cost vector ¢, basis B

Qutput: Optimal value f*, solution x*, or Unbounded
1. T:= T b

—c 0

2: Adjust cost row from B

3: while true do

4: c4+ find_entering_variable(T)

5: if ¢ is None then

6: break > optimality reached
7: end if

8: r < find_leaving_variable(T,c)

9: if r is None then

10: return Unbounded

11: end if

12: T < pivot(T,r,c)

13: Update basis B with B[r| + ¢

14: end while

15: Extract solution x* from T using basis B

16: f* < —-T_1 1 > optimal value from cost row
17: return f*, x*, feasible = true

https://commons.wikimedia.org/w/index.php?curid=1295511
https://commons.wikimedia.org/w/index.php?curid=1295511
https://github.com/Hansespinosa2/ech4905-andres-espinosa/tree/main
https://github.com/Hansespinosa2/ech4905-andres-espinosa/tree/main

	Introduction
	Linear Programming
	Simplex Algorithm
	Available Solvers
	Motivation

	Implementation
	GatorPy Syntax
	Simplex Implementation
	Phase 1: Finding a Feasible Solution
	Phase 2: Optimizing the Objective Function
	Key Functions in the Implementation

	Python Objects
	Expressions
	Variable
	Parameter
	Sums and LinearOperations
	Constraint
	Problem

	LP Reductions
	Final Form

	Results
	Testing
	GatorPy Usage

	Discussion
	Future Work
	Conclusion

	Appendix
	References

