
Multi-Agent Board Game Strategy Through
Simulation

Maximillian Banach
Electrical Engineering

Economics
University of Florida

mbanach@ufl.edu

Andres Espinosa
Industrial and Systems

Engineering
University of Florida

andresespinosa@ufl.edu

Cathy Quan
Computer Science

Mathematics
University of Florida
cathyquan@ufl.edu

Jason Li
Computer Science

Statistics
University of Florida

jason.li1@ufl.edu

Han Mach
Computer Science

University of Florida
hmach@ufl.edu

Brian Magnuson
Computer Science

University of Florida
b.magnuson@ufl.edu

Cody Flynn
Computer Science

University of Florida
codyflynn@ufl.edu

Abstract—In this paper, we investigate key factors that in-
fluence the effectiveness of TMARL agents in the environment
of Catan. Specifically, we examine the impact of: (1) a GNN-
based state-to-action network designed to leverage the board’s
spatial and relational structure, (2) various exploration strategies
to navigate extended decision-making phases, (3) different replay
sampling distributions to prioritize learning from high-impact
decisions, and (4) an ensemble model to mimic strategies em-
ployed by human players. The effectiveness of these approaches
will be assessed by comparing the best-performing model against
established baseline agents, including Random, Value Function,
Game-Theoretic, and Human players.

I. INTRODUCTION

A wargame, as defined by Dr. Peter Perla, is a model
involving people making decisions in a synthetic environment
of competition or conflict, in which they see the effects of their
decisions on that environment and then get to react to those
changes [1]. This framework extends naturally to competitive
environments like 4X games and strategic board games, which
share similar dynamics. The application of artificial intelli-
gence (AI) to complex, multi-agent environments has seen
significant advancements in recent years. However, military
wargaming remains a particularly challenging domain for AI.

The complexity of wargames stems from a variety of
factors: non-stationary dynamics, high planning, pervasive
uncertainty, diplomatic negotiation, strict constraints, and com-
peting objectives. To illustrate these challenges, consider the
reinforcement learning (RL) breakthrough of AlphaZero in
mastering Chess [2]. AlphaZero must learn a deterministic
environment—mastering board representation, understanding
game rules, evaluating positions, and grasping opening theory.
Now, imagine scaling this up to a wargame like Catan, where
an RL agent must navigate not only the same complexities but
also a constantly changing board, the need to negotiate with
multiple players, and the unpredictable dynamics of player
alliances and conflicts. The stakes are higher, the environment
is more chaotic, and the agent’s ability to adapt becomes far
more critical. From this, it becomes clear why wargames have

remained a formidable challenge for AI. However, solving
these challenges holds immense potential for military strategy,
diplomacy, and other high-stakes, multi-agent domains.

Beyond its contributions to the RL research community, this
paper highlights three key applications of enhanced wargaming
RL agents: enriched educational and training simulations,
automated adversarial and red-team strategy development, and
more robust decision support systems for high-stake strategic
environments. First, improved RL agents can elevate educa-
tional wargaming by serving as adaptive opponents or allies,
enabling trainees to experience a wider variety of realistic
scenarios. Second, as RL continues to develop, these agents
can expose blind spots and stress-test assumptions in military
planning, offering a scalable alternative to traditional red-
teaming methods. Finally, high-stakes decision-making envi-
ronments such as cyber, logistical, or battlefield operations can
benefit by integrating RL agents in wargaming simulations.
These systems can quickly simulate long-term consequences
of strategic choices, adapt to changing conditions in real-
time, and provide commanders with actionable insights under
uncertainty. To explore these possibilities in a controlled yet
sufficiently complex environment, we turn our attention to the
strategic board game Catan.

Catan offers a uniquely rich environment for studying
RL in wargame-like settings. It incorporates many of the
core challenges found in military wargames, including strict
constraints, stochasticity, and multi-agent negotiation. Unlike
purely deterministic games such as chess or Go, Catan forces
agents to reason under uncertainty, engage in trade and diplo-
macy with opponents, and make strategic decisions over a long
time horizon. Additionally, its widespread popularity and stan-
dardized ruleset make it a reproducible and well-understood
testbed for AI research. These characteristics, combined with
the availability of the open-source simulator catanatron
[3], make Catan an ideal sandbox for testing RL methods
designed for complex, adversarial simulations.

We now present the structure of our investigation and results



in applying RL methods to Catan. First, in section II, we
discuss related work in the areas of RL and wargames, high-
lighting both foundational studies and recent advancements.
In section III, we provide a comprehensive overview of the
necessary concepts for the paper. In section IV, we detail the
problem formulation and the methodology used to develop
and test the RL Agents in the catanatron environment.
In section V, we present the results of our experiments,
comparing the performance of different RL models and their
implications to the broader realm of RL in wargames. Finally,
in section VI, we discuss the broader implications of our
findings, including future real-world applications in wargame
simulations, and conclude with suggestions for future research.

II. RELATED WORK

Research on artificial agents in strategic environments has
evolved significantly over the past decades. Early work fo-
cused on rule-based systems and heuristic search, with notable
examples including Minimax and Alpha-Beta pruning used in
traditional board games like Chess and Checkers. The advent
of deep learning led to a major shift in agent design.

The introduction of Deep Q-Networks (DQN) by Mnih
et al. [4] marked a breakthrough by enabling agents to
learn value functions directly from high-dimensional input.
This success culminated in AlphaGo [5] and AlphaZero [2],
which demonstrated superhuman performance in Go, Chess,
and Shogi through self-play and Monte Carlo Tree Search
(MCTS). However, these successes were largely confined
to deterministic, fully observable environments. In contrast,
environments like the board game Catan [6] and the 4X game
Civilization [7] present more complex, stochastic, and partially
observable settings. The characteristics of imperfect infor-
mation, multiple win conditions, and negotiation align more
closely with military wargames and diplomatic simulations.

Recent work has begun exploring Reinforcement Learning
in multi-agent and highly constrained settings. In [8], the
Dyna-Q algorithm adapts to different personality types in
Civilization IV, inspiring our ensemble approach in Section IV.
In the realm of Pokémon battles, a Q-learning agent underper-
forms against a custom Minimax algorithm [9], while in Tribes
[10], a genetic algorithm yields the best results—though a rule-
based agent performs comparably.

Efforts to apply RL to Catan reveal numerous challenges.
Dr. Henry Charlesworth [11] shows that introducing negotia-
tion dramatically expands the action space, severely impacting
agent performance. To mitigate similar issues, Kim and Li
[12] disable trading altogether to avoid model degradation. In
[13], the problem is simplified drastically by restricting a DQN
agent to only the opening phase of the game. Most notably, [3]
employs an Alpha-Beta model which relies on a hand-crafted
heuristic value function, which remains the best-performing
agent in Catan to date for the purposes of our research.

In parallel, the rise of Graph Neural Networks (GNNs) has
provided a powerful mechanism for learning over structured
data, which is particularly valuable in games like Catan, where
spatial and relational features are central to strategic reasoning.

Relational inductive biases, as outlined in [14], are critical
when tasks naturally map to graph representations, such as
board games or networked environments. Recent surveys and
reviews [15] further highlight the potential of GNN-RL inte-
gration across wargame-like domains including game simula-
tions, pandemic modeling, and cybersecurity. Notably, graph-
based reinforcement learning has been successfully applied to
previously unsolved domains, such as influence maximization
[16], traffic signal optimization [17], and cyberattack simula-
tion [18]. These studies showcase GNN’s ability to scale and
generalize across graph-structured domains.

Despite the breadth of work in strategic agents, few studies
have tackled environments that simultaneously exhibit strict
constraints, stochasticity, and social complexity. Catan embod-
ies these traits, yet existing reinforcement learning approaches
often simplify the environment or rely on domain-specific
heuristics. At the same time, graph-based RL methods have
shown promise in similarly structured domains but remain
largely unexplored in social-diplomatic games. Our research
aims to document which components of reinforcement learn-
ing align well with wargame-like mechanics—from graph
representations of spatial dynamics to policy learning under
uncertainty and negotiation.

III. BACKGROUND CONTEXT

A. Settlers of Catan

Catan is a popular multiplayer board game centered around
resource management, player negotiation, and settlement ex-
pansion. It is played on a hexagonal board composed of
various resource tiles. Players roll dice for resource acquisition
and may trade with others to build roads, settlements, and
cities strategically in efforts to be the first person to reach 10
victory points and win the game against other opponents.

Unlike deterministic games like chess or Go, Catan in-
corperates many stochastic elements. The game board is
randomized in every session; resources tile and their associated
number tokens vary each game, meaning players must adapt
to a different environment with every playthrough. Resource
availability is determined by dice rolls, which introduce prob-
abilistic variability even though some numbers are statistically
more likely than others. Additionally, the game includes ele-
ments of diplomacy, as players can propose, accept, or reject
trades. These interactions often reflect hidden goals, temporary
alliances, or attempts to sabotage opponents. Such dynamics
create a rich space for analyzing multi-agent behavior and
contribute to the game’s expansive action space.

This large action space, combined with the presence of 4
players, results in slow-paced gameplay with frequent low-
impact actions, such as unsuccessful trade proposals or incon-
sequential dice rolls. To succeed, players must think about the
actions of all 3 opponents and rationalize the hidden decisions
and goals. These elements lead to long decision sequences
with limited immediate feedback, which have made it difficult
for both AI-based and game-theoretic models to outperform
the average human player.



B. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) is a subfield of ma-
chine learning that integrates reinforcement learning (RL)
principles with deep neural networks. In RL, an agent interacts
with an environment and learns to select actions, through trial
and error, that maximize cumulative future rewards. The agent
aims to learn optimal actions in given states to achieve the
highest possible long term rewards over time. DRL extends
traditional RL by using deep networks to approximate either
value functions such as Deep Q-Learning (DQN), which use
neural networks to approximate the Q-value function, or by
employing policy gradient methods directly like, Proximal Pol-
icy Optimization (PPO) and Trust Region Policy Optimization
(TRPO), which directly optimize the policy. This integration
allows the agent to handle high-dimensional state and action
spaces, making DRL suitable to solve more complex problems.

One of the most well-known DRL breakthroughs is Alp-
haZero. This breakthrough demonstrated that deep networks
accompanied with self-play could achieve superior perfor-
mance against humans in games like chess and Go. However,
DRL success has yet to hold in multi-agent environments like
Catan, where the presence of other multi-agent intteractions
and stochasticit introduces instability in training. These chal-
lenges also present an opportunity to explore and advance
methods to making DRL more effective in environments where
stratigic reasoning and uncertainty exists.

C. Graph Neural Networks

Graph Neural Networks (GNNs) are a type of neural net-
work architecture that is designed to process graph-structured
data. In a graph, nodes represent entities, while edges represent
the relationships between them. Layers in a GNN iteratively
update node representations by aggregating features from
neighboring nodes, allowing the model to capture local and
global structural information within the graph.

In the context of games like Catan, GNN’s can be useful to
model the game board as a graph. In this graph formulation,
elements of the game are the nodes and spatial interactions
between them are edges, which allows an agent to develop
an understanding about the strategic dependencies more ef-
fectively than flat vector input structures. Feedforward neural
networks (FNNs), are limited in their ability to encapsulate
the relationship between entities and often loses spatial infor-
mation in the process.

While GNNs have the upperhand to complex environments,
they also come with limitations. For instance, they can suffer
from issues like over-smoothing, where node representations
can become indistinguishable after many layers, and scala-
bility issues when applied to large or dynamic graphs. As a
result, it is crucial to carefully design meaningful node and
edge features to ensure the GNN can learn informative and
distinctive representations.

IV. IMPLEMENTATION

To advance the state of RL in wargaming, our implementa-
tion focuses on three core research directions. First, we inves-

tigate how wargames can be naturally represented as graphs
or sets of graphs, and we provide both mathematical and em-
pirical evaluations of the effectiveness of such representations.
Second, we examine the impact of RL exploration strategies
on the agent’s ability to solve wargame-like tasks. Third, we
propose an ensemble RL framework that integrates multiple
heuristic submodels, each specializing in different aspects of
the game. By offloading low-level constraint handling and
decision making, we allow the RL agent to focus on the long-
term aspects of the wargame while still outperforming the
individual heuristic submodels.

A. State Space

The first step in any RL project is to model the environment
as a Markov Decision Process (MDP). The game of Catan
can clearly be modeled as an MDP through translating board
and player information into numeric representations. However,
its state space is incredibly high-dimensional and complex
due to the game’s stochastic nature, different win conditions,
and multi-agent dynamics. Catan is a multi-agent environment
with 2 to 4 players. In this work, we standardize the player
count to 4 for both vector and graph-based representations.
This assumption allows us to train a single, unified model that
can generalize across 1v1, 1v2, and 1v3 testing environments.
We also assume the game will always use the standard board
configuration of 19 hex tiles, 54 building locations, and 72
road locations.

1) Vector Representation: The vector-based state represen-
tation encodes the game state of Catan at any given time step
as a flattened numerical array. This approach to modeling the
game benefits from being easily ingested by a neural network.
We denote the game state as a vector s ∈ Rd, where each
entry si represents a specific element of the game state. The
total dimensionality d corresponds to the total length of all
encoded components, organized as follows:

• s0 to s287: One-hot encoding of edge ownership.
• s288 to s503: One-hot encoding of settlements.
• s504 to s719: One-hot encoding of cities.
• s720 to s1043: One-hot encoding of port locations.
• s1044 to s1063: One-hot encoding of the robber’s position.
• s1064 to s1177: One-hot encoding of tile resource types.
• s1178 to s1367: One-hot encoding of dice values assigned

to tiles.
• s1368 to s1442: Other game information outside of the

board.
See section IX-C1 in the appendix for more detailed infor-

mation.
2) Graph Representation: The same 1443-length state vec-

tor described in section IV-A1 can be decomposed into two
logical parts: board-specific features (s0 − s1367) and global
game state features (s1368 − s1442). This separation naturally
lends itself to a graph-based modeling aproach: the board is
represented as a graph, while the global state becomes a set of
auxiliary features. In this representation, spatial and relational
dynamics are explicitly captured. We model the board as a
graph with:



• Nodes: Representing building locations (settlements and
cities).

• Edges: Representing roads and connectivity between
nodes.

• Node features: Encoding ownership, port access, and
properties of adjacent tiles.

• Edge features: Encoding road ownership.
• Graph-level features: Capturing the remaining global

game state (e.g., player inventories, development cards,
bank resources).

While we maintain fixed assumptions on map size and
player count for consistency with the vector representation,
one advantage of the graph model is its flexibility. By mod-
eling players and tiles as nodes of different types, the graph-
based approach can easily scale to more dynamic or irregular
game setups.

Each node embedding x is structured as:
• x0: Node ID. (used for debugging)
• x1 − x4: One-hot encoding of whether player j has a

settlement on this node.
• x5−x8: One-hot encoding of whether player j has a city

on this node.
• x9 − x14: One-hot encoding of whether this node has a

port of resource type l.
• x15−x50: One-hot encoding of the resource type of each

adjacent tile k.
• x51 − x110: One-hot encoding of the dice value of each

adjacent tile k.
• x111 − x116: One-hot encoding of whether the robber is

on each adjacent tile k.
Each edge embedding e is structured as:
• e0: Edge ID. (used for debugging)
• e1 − e4: One-hot encoding of whether player j owns the

road on this edge.
The graph-level feature vector y includes:
• y0−y74: The same global features used in the vector rep-

resentation, including development cards, bank inventory,
dice rolls, available player structures, and current victory
points.

3) Comparison and Motivation: By constructing both vec-
tor and graph-based state representations, we aim to highlight
the trade-offs of each approach. The vector format provides a
compact and dense encoding, ideal for traditional feedforward
networks. However, it fails to capture spatial relationships and
topological structure—critical elements in games like Catan.

The graph representation preserves these relationships and
opens the door to leveraging graph neural networks (GNNs),
which are more adept at modeling interactions in structured
environments. This approach aligns well with how many
wargames—including 4X games like Civilization and naval
simulations like Harpoon. In these games, spatial relationships
between players, units, and terrain are fundamental and often
too complex to be flattened into a fixed-length vector.

Games with rich, dynamic maps and interactions are more
naturally expressed as graphs. Units, tiles, players, and re-

sources can be modeled as heterogeneous nodes, and their
interactions as typed edges. As wargames become increasingly
complex and agentic, we believe that graph-based state mod-
eling will be a foundational tool for future AI systems in this
domain.

B. Exploration Strategy

To explore the action space effectively, we implement two
exploration strategies: epsilon-greedy and Gibbs softmax.

In the epsilon-greedy approach, the agent selects a random
action with a fixed probability ϵ, encouraging exploration,
while exploiting the current best-known action with probability
1−ϵ. This method is simple to implement and has been widely
used in reinforcement learning due to its straightforward
balance between exploration and exploitation.

On the other hand, Gibbs softmax assigns probabilities
to actions based on their estimated values using a softmax
function. Actions with higher estimated values are selected
more frequently, but less optimal actions are still considered
with non-zero probability. This probabilistic approach allows
for more nuanced exploration compared to the binary decision-
making of epsilon-greedy.

The motivation for comparing these two strategies lies in
their differing strengths. Epsilon-greedy is computationally
efficient and effective in simpler environments, but it may
struggle in heavily constrained action spaces like Catan, where
the majority of actions are unavailable at any given timestep.
Gibbs softmax, by focusing exploration on high-value ac-
tions while still considering alternatives, may better navigate
such complex, multi-agent environments. By evaluating both
methods, we aim to identify which strategy is more effective
in balancing exploration and exploitation in the context of
Catan’s unique challenges.

C. Action Space

To introduce the action space, we examine the possible
decisions a player can make in Catan. The action space in
Catan shares several important characteristics with those found
in many wargames.

The first characteristic is that the action space is tightly
constrained. For instance, a typical turn in Catan consists of
approximately 2-10 discrete actions. Each turn begins with a
mandatory ”Roll Dice” action to simulate resource distribution
and ends with an ”End Turn” action to relinquish control. As
a result, the action distribution is often highly skewed, with
a small subset of actions dominating the majority of agent
behavior.

A second characteristic is the presence of both competitive
and diplomatic actions, which adds significant variety to the
action space. Social actions, in particular, can dramatically
expand the space due to their continuous and combinatorial
nature. In Catan, for example, trading is a key mechanic, and
in theory, a player could propose any quantity of one resource
in exchange for any quantity of another. To keep the action
space manageable in our simulation, we restrict trades to 1:1
resource exchanges.



Finally, wargames are typically characterized by a high
degree of stochasticity. The initial game state can vary widely
between playthroughs, even though the underlying rules re-
main constant. In Catan, this is reflected in the randomized
board layout at the start of each game and the dice rolls used
to determine resource distribution each turn.

Taken together, these characteristics illustrate that the action
space in wargames is significantly more complex than in many
other types of games. Ultimately, this complexity motivates the
integration of heuristic decision-making frameworks with the
generalization capabilities of reinforcement learning agents.
We propose a comparison between two action spaces: the first
samples directly from the complete set of feasible actions,
while the second selects from a set of heuristic sub-models
designed to guide decision-making.

1) Direct Actions: In the direct action formulation, the
agent samples from the full set of all legal actions available
at a given game state. This includes actions such as building
roads, settlements, or cities; buying development cards; trading
with the bank; initiating trades with other players; playing
development cards; and ending the turn. The space of legal
actions varies dynamically based on the player’s resources,
board position, and game phase, making it nontrivial to
enumerate at each step.

To ensure tractability, we dynamically generate the legal
action set at each timestep and represent it as a discrete action
space to mask out the infeasible actions. The process of a
direct agent selecting a move can be seen in Figure 1, where
the Action Mask is responsible for masking out infeasible
actions to ensure the agent does not violate the laws of the
game. While this approach gives the agent full control and
expressiveness, it suffers from challenges related to sample
efficiency and sparse optimal actions—especially during early
stages of training where the agent has not yet learned mean-
ingful patterns in action selection.

One thing the current state of RL in wargaming reveals is
that the complexities of wargames have made it intractable
for RL agents (with the current algorithms and technology) to
outperform humans, or even other heuristics. In order to enable
an RL agent to learn how to navigate the long-term strategy
of a wargame, while abstracting away individual choices we
propose an ensemble heuristic model in the following section.

Game
State Direct ...

Action 1

Action 413

Action Mask ACT

Fig. 1. Overview of the direct model architecture

2) Sub-Model Sampling: The heuristic sub-model formula-
tion abstracts the decision-making process by grouping low-
level actions into higher-level strategic behaviors. Rather than
selecting individual actions directly, the agent chooses from a

predefined set of heuristic policies, each designed to encode
domain knowledge and target a specific tactical objective.

In our implementation, we employ an ensemble of seven
TacticaValueFunction agents—greedy heuristic value function
players—each tuned with distinct hyperparameters to spe-
cialize in a particular tactic. As illustrated in Figure 2, the
ensemble agent delegates decision-making to one of these sub-
models, thereby avoiding the need to explicitly reason about
the full space of feasible actions at each timestep. For instance,
one sub-model is optimized for road expansion, prioritizing
road placement and settlement opportunities, while another
emphasizes resource accumulation to enable city development.
Once selected, a sub-model autonomously executes a sequence
of actions until a predefined stopping condition is met or
control is returned to the agent.

Importantly, these sub-models are not limited to heuristic
policies; the framework is generalizable to any decision-
making model that encapsulates narrow, low-correlated tactics,
whether learned or rule-based.

This hierarchical structure significantly reduces the com-
plexity of the action space, leading to improved sample
efficiency and more stable learning dynamics. However, it also
introduces a trade-off: the agent’s capacity to discover novel
or unconventional strategies is constrained by the diversity and
expressiveness of the sub-model set.

By comparing this sub-model-based approach with the
direct action formulation, we aim to evaluate the balance
between fine-grained control and strategic abstraction in com-
plex, stochastic environments such as Catan.

Game
State Ensemble ...

Tactic 1

Tactic 7

ACT

Fig. 2. Overview of the ensemble sub-model decision-making architecture

V. RESULTS

Several tests were run to compare the performance of
different parameters that will be reported in the following
subsections. For each table, the win rates are measured over
1000 games against each of the baseline agents in a 4-player
environment with one agent of the specified trained model
against three agents of a specified baseline model.

Note that for testing whether the following models signif-
icantly outperforms a given baseline agent, a binomial test
was run at the α = 0.01 significance level with the alternate
hypothesis being that the win rate is greater than 25%. All tests
were run in R[19]. When tests were run over 1000 games, the



model significantly out-performs a given baseline model if the
win rate is ≥28.3%1.

When comparing win rates between two models against the
same baseline for signficant difference, a one-sided Z-test for
two proportions was done at the α = 0.01 significance level2.

A. Action Space Comparison

We compared two models trained over 1,000 games, dif-
fering only in their action space configuration. One model
utilized a direct action selection strategy (Direct4112), while
the other employed a sub-model sampling ensemble approach
(Ensemble4111). The win rates against the three baseline
agents is found in Table I.

TABLE I
COMPARISON OF DIRECT ACTION VS. SUB-MODEL SAMPLING

Model Random Value Function Alpha-Beta
Direct4112 100% 0% 0%
Ensemble4111 100% 34% 13%

These results indicate that the sub-model sampling strategy
used in Ensemble4111 yields stronger and more generalizable
performance across all of the baseline opponents. In contrast,
the direct action approach in Direct4112 struggled to compete
effectively, particularly against more sophisticated baseline
agents.

B. Representation Comparison

Another model was created to compare the game state
representation of agents, comparing the graph and vector
representation of the environment. These are compared using
a GNN model (Ensemble4111) compared to a Feedforward
Neural Network (FNN) model (FNN4140) with all other
hyperparameters held constant. Performance metrics from this
comparison are detailed in Table II.

TABLE II
COMPARISON OF GNN VS. FNN REPRESENTATION

Model Random Value Function Alpha-Beta
FNN4140 99% 13% 10%
Ensemble4111 100% 34% 13%

Against Random and Alpha-Beta models, there is no
significant performance difference between the two models.
However, the performance gap widens against the Value
Function model; this suggests that there may be some benefit
of using GNN over FNN, but the results are inconclusive.

1Confidence interval from binom.test(283, 1000, 1/4,
alternative = "greater", conf.level = 0.99) in R[19]

2P-value derived from prop.test(x=c(Lesser_Model_Win_Rate,
Greater_Model2_Win_Rate) * 1000, n=c(1000, 1000),
alternative = "less", conf.level = 0.99, correct =
FALSE) in R[19]

C. Reward Function Comparison

Two models were created to compare the performance of
sparse reward function and a dense reward function. The
sparse model consisted of punishing the agent for prolonged
games, and giving a large reward or punishment corresponding
to winning and losing respectively. On the other hand, the
dense reward function was constructed to provide rewards
encouraging heuristic behaviors. The Performance comparison
is detailed in Table III with the dense model named Ensem-
ble4110 the sparse model being Ensemble4111.

TABLE III
COMPARISON OF GNN VS. FNN REPRESENTATION

Model Random Value Function Alpha-Beta
Ensemble4110 100% 27% 12%
Ensemble4111 100% 34% 13%

Against Random agents, both models achieved perfect
performance (100% win rate), indicating that both are able
to reliably outperform the simplest models.

Against the Value Function baseline, Ensemble4111 sig-
nificantly outperformed the dense-reward agent with a 34%
win rate, compared to 27% for Ensemble4110. This suggests
that the sparse reward function better encouraged long-term
strategic play. When playing against the strongest opponent,
Alpha-Beta, Ensemble4111 only slightly outperforms Ensem-
ble4110, but there is no significant performance gain.

Overall, these results suggest that sparse reward signals,
despite offering less frequent feedback, may more effec-
tively guide the agent toward high-level winning strate-
gies—particularly against stronger, more strategic opponents.
Furthermore, sparse models are simpler to construct in most
environments. Additionally, sparse reward functions are often
simpler to design and implement across a wide range of
environments.

D. Training Opponent Comparison

To evaluate the impact of training diversity on agent per-
formance, we compared two agents trained over 2000 games:
CatanicaBeta, which was trained exclusively against the best
performing agents—Alpha-Beta agents, and Catanica, which
was trained against a mixture of Value Function and Alpha-
Beta agents. This experiment aims to assess whether exposure
to a broader range of strategies during training leads to
better generalization and robustness. Table IV compares their
performance across multiple baseline opponents to determine
how training diversity influences overall performance.

TABLE IV
COMPARISON OF GNN VS. FNN REPRESENTATION

Model Random Value Function Alpha-Beta
CatanicaBeta 100% 28% 24%
Catanica 98% 37% 24%

Against both Random and Alpha-Beta agents, both models
perform nearly the same. However, Catanica exhibits a signif-
icant improvement in win rate against the Value Function.



This suggests that diversifying the training opponents can
lead to greater generalization and robustness. However, these
opponents are also the models that the two reinforcement
learning agents were trained against, so this does not yield
conclusive evidence, and would require further investigation.

VI. CONCLUSION

In this work, we investigated various approaches to improv-
ing the performance of reinforcement learning (RL) agents
in the wargame environment of Catan. Through a series of
experiments comparing different action space configurations,
state representations, reward functions, and training strategies,
we found that certain strategies, such as sub-model sampling
and sparse reward signals, display strong signs of promise.
Specifically, the sub-model sampling approach demonstrated
superior performance compared to direct action strategies,
while sparse reward functions were more effective in guiding
agents toward long-term strategic play, particularly against
stronger baseline models.

We also explored the impact of training diversity on agent
performance, showing that exposure to a broader range of
strategies can lead to improved generalization. However, fur-
ther investigation is required to confirm these findings in more
diverse settings.

A. Future Work

There are several exciting avenues for future research.
One limitation in our study was an investigation centered
on human players in wargames, which may reveal unique
insights into the strengths and weaknesses of current strategies.
Additionally, further theoretical exploration into the character-
istics of wargames that make them suitable for graph-based
representations could lead to more effective model designs.

Another interesting area of research is the potential for
subdividing complex wargames into smaller sub-games, each
tackled by specialized agents. This approach would reduce the
complexity faced by each individual agent, allowing it to focus
on specific aspects of the game. Evaluating the performance of
such models, particularly in multi-agent environments, could
offer valuable insights into how to scale RL agents effectively
for more complex games.

VII. CONTRIBUTIONS

VIII. ACKNOWLEDGEMENTS



IX. APPENDIX

A. Submission Abstract

Settlers of Catan (Catan) is a popular board game featur-
ing expansion, resource management, negotiation, and long-
term planning decisions. Unlike traditional turn-based strategy
games like Go or Chess, which have been effectively mastered
by AI agents, Catan presents a far greater challenge due to
its stochastic nature, non-stationary dynamics, and multi-agent
interactions—with up to 4 players in the base game. Catan
also features slow-paced gameplay with frequent low-impact
actions, such as unsuccessful trade proposals or inconsequen-
tial dice rolls. These elements lead to long decision sequences
with limited immediate feedback, which have made it difficult
for both AI-based and game-theoretic models to outperform
the average human player.

To address this challenge, we leverage two emerging areas
of research: Turn-Based Multi-Agent Reinforcement Learning
(TMARL) and Graph Neural Networks (GNNs). TMARL pro-
vides a learning framework where agents iteratively improve
their decision-making through experience in multi-agent envi-
ronments. Meanwhile, GNNs offer a powerful representation
learning approach that captures both local and global structures
within a game state.

In this paper, we investigate key factors that influence the
effectiveness of TMARL agents in the environment of Catan.
Specifically, we examine the impact of: (1) a GNN-based
state-to-action network designed to leverage the board’s spatial
and relational structure, (2) various exploration strategies to
navigate extended decision-making phases, (3) different replay
sampling distributions to prioritize learning from high-impact
decisions, and (4) an ensemble model to mimic strategies
employed by human players. The effectiveness of these ap-
proaches will be assessed by comparing the best-performing
model against established baseline agents, including Random,
Value Function, Game-Theoretic, and Human players.

Our findings will provide valuable insights into the chal-
lenges and opportunities of applying RL to complex, multi-
agent environments. The simultaneous interplay of competing
objectives and diplomatic negotiations presents a unique chal-
lenge for AI—one that remains largely unsolved. Therefore,
our results also have broader implications for the development
of decision-support systems in military strategy, where turn-
based simulations are commonly used to model future engage-
ments, resource allocation, and coalition dynamics—similar to
Catan.
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C. State Information

1) Vector Representation:

• s0 to s287: One-hot encoding of edge ownership. There
are 72 edges and 4 players, giving 72× 4 = 288 entries.
Entry s4k+j = 1 if edge k is owned by player j.

• s288 to s503: One-hot encoding of settlements. There are
54 nodes and 4 players, so 54 × 4 = 216 entries. Entry
s288+4i+j = 1 if node i has a settlement belonging to
player j.

• s504 to s719: One-hot encoding of cities. Again, 54×4 =
216 entries. Entry s504+4i+j = 1 if node i has a city
belonging to player j.

• s720 to s1043: One-hot encoding of port locations. Each
of the 9 port nodes can be assigned to one of 4 resource
types or a 3:1 trade port (assume 5 types), and ports are
placed at nodes. This gives 54 × 6 = 324 entries. Entry
s720+6i+l = 1 if node i has a port of type l.

• s1044 to s1063: One-hot encoding of the robber’s position.
There are 19 tiles, so 19 entries total. Entry s1044+m = 1
if the robber is on tile m.

• s1064 to s1177: One-hot encoding of tile resource types.
With 19 tiles and 6 resource types (wood, brick, wheat,
sheep, ore, desert), this gives 19×6 = 114 entries. Entry
s1064+6m+l = 1 if tile m has resource type l.

• s1178 to s1367: One-hot encoding of dice values assigned
to tiles. Dice values range from 2 to 12 (excluding 7,
which is unused by Catan), so with 19 tiles, we get 19×
10 = 190 entries. Entry s1178+12m+n = 1 if tile m has
dice value n.

• f0 to f4: Resource bank counts for each of the 5 resource
types.

• f5: Number of development cards left in the deck.
• f6: Whether players are currently discarding (boolean

flag).



• f7: Whether the knight (robber) is being moved (boolean
flag).

• f8: Actual victory points of the current player (p0).
• f9 to f13: Current player’s hand count for each of the 5

resources.
• f14 to f18: Current player’s hand count of each develop-

ment card type.
• f19 to f22: Whether each player has rolled yet this turn.
• f23 to f26: Number of resource cards held by each player.
• f27 to f30: Number of development cards held by each

player.
• f31 to f34: Whether each player has Largest Army.
• f35 to f38: Whether each player has Longest Road.
• f39 to f42: Number of roads available for each player.
• f43 to f46: Number of settlements available for each

player.
• f47 to f50: Number of cities available for each player.
• f51 to f54: Length of longest road for each player.
• f55 to f58: Total visible victory points for each player.
• f59 to f74: Whether each player has played a non-VP

development card (4 players × 4 types).
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X. ANDRES SCRAP WORK

A. Value Function Experiment

The value function experiment’s goal is to find the optimal
set of inputs x ∈ Rn that parameterize a value function Vx(s).
n is the number of parameters that parametrize the value
function and s is the state that the value function receives. Our
goal is to vary the inputs and evaluate the results of games
played. The results of each game is defined as y ∈ Rm. m
is the number of objectives we aim to achieve. We define a
noisy function f : Rn → Rm that takes in the input x and
outputs the results y.

In the current example building off the value function used
by default in the ValueFunctionPlayer class there are
n = 13 parameters to choose from.

• public_vps
• production
• enemy_production
• num_tiles
• reachable_production_0
• reachable_production_1
• buildable_nodes
• longest_road
• hand_synergy
• hand_resources
• discard_penalty
• hand_devs
• army_size

For simplicity in illustrating the first example, we take y ∈ R
as the proportion of games won by the player. f : Rn → R
is then a function that maps the input x to the proportion of
games won y. In this case, we seek to maximize the number of
wins by varying the parameters that define the value function.

In a more general case, y need not be a single valued
function. In order to find competitive sub-strategies that not
only pursue the primary objective (win), but also pursue
secondary objectives such as (longest road), we scalarize this
multiple objective problem. For example, take a y ∈ R4

defined as such:
• win_proportion
• longest_road
• settlement_count
• largest_army

To optimize this objective, we scalarize with a heuristic set
of hyper-parameters λ ∈ R4. We then have the following
unconstrained optimization problem:

max
x

λ⊤y

Due to the complexity of game environments, we can not
compute the derivatives of f . Therefore, this can only be
solved through zeroth-order methods or estimation.

B. Graph Creation

This section involves my thoughts on how to structure the
graph to best represent information. The current features that
are labeled as graph_features are listed below:

• EDGE<i>_P<j>_ROAD

– Whether edge i is owned by player j
– 72×N
– Boolean

• NODE<i>_P<j>_SETTLEMENT

– Whether player j has a settlement in node i
– 54×N
– Boolean

• NODE<i>_P<j>_CITY

– Whether player j has a city in node i
– 54×N
– Boolean

• PORT<i>_IS_<resource>

– Whether node i is port of resource (or
THREE TO ONE)

– 9× 6
– Boolean

• TILE<i>_HAS_ROBBER

– Whether robber is on tile i
– 19
– Boolean

• TILE<i>_IS_<resource>

– Whether tile i yields resource (or DESERT)
– 19× 6
– Boolean

• TILE<i>_PROBA

– Tile i’s probability of being rolled
– 19
– Float

where N is the number of players and there are 5 resource
types. Representing this information in a graph where the
nodes are building corners and the edges are roads has some
advantages. Each of the 54 nodes would have a feature vector
associated with it. Assuming 4 players, the node feature vector
would look like:

• x0: NODE_ID
• x1 − x4: P<j>_SETTLEMENT
• x5 − x8: P<j>_CITY
• x9 − x14: IS_<resource>_PORT
• x15 − x50: ADJACENT<k>_IS_<resource>
• x51 − x110: ADJACENT<k>_DICE_VALUE
• x111 − x116: ADJACENT<k>_HAS_ROBBER

This representation is built to keep every feature as a one-hot
encoding and maintain as much information as possible. There
would be an edge between each node for a total of 72 edges.
The feature vector for each edge would be a one-hot encoding
of the owner road

• e0: EDGE_ID
• e1 − e4 P<j>_ROAD

The overall graph vector y would be equal to the numerical
features available in the environment.


